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a b s t r a c t

Soil organic matter (SOM) is a very complex and heterogeneous system which complicates its
characterization. In fact, the methods classically used to characterize SOM are time- and solvent-
consuming and insufficiently informative. The aim of this work is to study the potential of 3D solid-phase
front face fluorescence (3D-SPFFF) spectroscopy to quickly provide a relevant and objective character-
ization of SOM as an alternative to the existing methods.

Different soil models were prepared to simulate natural soil composition and were analyzed by 3D
front-face fluorescence spectroscopy without prior preparation. The spectra were then treated using
Independent Components Analysis. In this way, different organic molecules such as cellulose, proteins
and amino acids used in the soil models were identified.

The results of this study clearly indicate that 3D-SPFFF spectroscopy could be an easy, reliable and
practical analytical method that could be an alternative to the classical methods in order to study SOM.

The use of solid samples revealed some interactions that may occur in natural soils (self-quenching in
the case of cellulose) and gave more accurate fluorescence signals for different components of the
analyzed soil models.

Independent Components Analysis (ICA) has demonstrated its power to extract the most informative
signals and thus facilitate the interpretation of the complex 3D fluorescence data.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Soil organic matter (SOM) has been directly and positively
related to soil fertility and agricultural productivity potential. It is
an important indicator of soil health as it plays a role in many key
functions:

� it stores and supplies many nutrients needed for the growth of
plants and soil organisms;

� it reduces the risk of erosion nutrient leaching;
� it prevents or minimizes soil compaction;
� it retains carbon from the atmosphere;
� it reduces the negative environmental effects of pesticides,

heavy metals, and many other pollutants.

However, SOM has been called “the most complex and least
understood component of soils” [1]. Magdoff considers SOM to be
diverse organic materials, such as living organisms, slightly altered
plant and animal organic residues, and well-decomposed plant and
animal tissues that vary considerably in their stability and suscept-
ibility to further degradation [2]. SOM is complex because it is
heterogeneous (non-uniform) and, due to biological factors under
which it was formed, it does not have a well-defined chemical and
physical structure which makes its characterization difficult. In fact,
classically, the characterization of SOM requires multiple extractions
and fractionations [3–6] that use large volumes of solvents and long
sample processing times, introducing the possibility for chemical
alteration of the initial material. In addition, these methods of
fractionating SOM into humic acid, fulvic acid, and humin are no
longer considered meaningful because the obtained fractions are
heterogeneous, non-reproducible and artificially defined (these frac-
tions do not really exist as definite entities in soils) [7].
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Synchronous and classical three dimensional fluorescence
spectroscopy have been widely used for dissolved organic matter
[8,9], water extractable organic matter [5] and the characterization
of humic and fulvic acids [4,10–12]. However, despite the interest
and the efficiency of fluorescence spectroscopy in the study of
dissolved organic matter, this technique has not been used to
characterize the organic matter in solid samples.

Front-face fluorescence spectroscopy is a technique suitable for
the analysis of concentrated, opaque or even solid samples. The
advantages of this technique are its speed of analysis, lack of
solvents and reagents, and requirement of only small amounts of
sample. In addition, it is a non-invasive, highly selective and
sensitive technique. The front-face (FF) technique has been shown
to be able to provide accurate results in solid samples such as
pharmaceutical products [13,14], semi-hard cheeses [15], crushed
nuts and sesame seeds [16] and chicken meat [17].

The use of powder samples is a challenge [18,19]. Indeed, in
addition to the signal saturation from the undiluted samples, the
Rayleigh scattering in this case is much higher than the maximum
intensity of the fluorescence signals which may mask the spectra of
the sample components.

The interpretation of fluorescence spectral data is complex due
to the presence of many fluorophores in the same excitation–
emission-matrix (EEM). Different chemometric methods such as
PARAFAC, MCR-LS and PLS [9,20–22] have been used in order to
analyze the fluorescence data. In this paper, Independent Compo-
nents Analysis (ICA), was applied to the 3D-front-face fluorescence
spectra to facilitate their interpretation.

ICA aims at recovering the underlying source signals and their
proportions from a set of mixed signals based on the assumption
that these source signals are statistically independent [23]. The
general ICA model is given by [24,25]

X ¼ AUS

where X is the matrix of observed spectra, S is the matrix of unknown
“pure” source spectra and A is the mixing matrix of unknown
coefficients, directly related to the corresponding proportions.

Based on the Central Limit Theorem, ICA assumes that statis-
tically independent source signals have intensity distributions that
are less Gaussian than their mixtures [24,25]. For this reason, ICA
aims to maximize the non-gaussianity of the extracted signals.

The JADE (Joint Approximate Diagonalization of Eigenmatrices)
[26] algorithm for ICA was used in this study. JADE maximizes the
independence of the extracted signals by a joint diagonalization of
matrices of the fourth-order cumulants calculated from the data.
Fourth-order cumulants are measures of the non-gaussianity of
combinations of the signals. The cumulants calculated from two pure
independent signals are zero while those of mixed signals are non-
zero. More details on the JADE algorithm can be found in [27].

The aim of this work was to study, using different mixtures
of pure compounds (commercial powders) to simulate the com-
position of natural soils, the potential of 3D solid-phase front face
fluorescence (3D-SPFFF) spectroscopy to quickly provide a relevant
characterization of SOM as an alternative to the classical methods
to avoid solvent use and sample preparation.

2. Materials and methods

2.1. Chemicals

All chemicals: Bovine serum albumin (BSA), lignin, sand (50–70
mesh), kaolinite (natural), charcoal (norit, type darco), cellulose,
oil and grease in soil, L-tyrosine and L-phenylalanine were pur-
chased from Sigma-Aldrich (St. Quentin Fallavier, France).

2.2. Experimental design

Different mixtures of pure compounds were prepared, in which
the proportions of three pure compounds were varied: BSA and
lipids (oil and grease in soil) between 0 and 20% and cellulose
between 0 and 50% of the total organic matter (50%).

The mineral fraction (sandþkaolinite) was kept invariable at
40%. Similarly for lignin and charcoal that were maintained at
5% each.

The choice of the proportions of the pure compounds used in
the model soils was based on the composition of natural soils. For
example, the quantity of cellulose in natural soils is much higher
than that of proteins (BSA) which does not exceed 20% of the total
organic matter.

The Nemrod software [28] was used to generate a mixture
design consisting of 13 different experiments as given in Table 1.

2.3. 3D-SPFFF analysis

Fluorescence landscapes (3D spectra) were measured directly on
the samples without prior preparation, using a spectrofluorometer
(LS45, Perkin-Elmer) equipped with a xenon lamp source, excitation
and emission monochromators and a front-face sample-cell holder.
Measurements were carried out using quartz cuvettes. The instru-
mental settings were excitation wavelengths 230–500 nm (step 4 nm)
and emission wavelengths 250–560 nm (step 0.5 nm). Excitation and
emission monochromator slit widths were set at 10 nm. Emission
monochromator scan speed was 800 nm s�1. A photomultiplier (PM)
voltage of 650 V was used to avoid detector saturation. Unlike the
other samples, BSA was analyzed with an 8% transmission attenuator
(attenuator – approximately 8% Perkin-Elmer) on the excitation beam.

The data corresponding to each pure compound (BSA, cellulose,
lignin, lipids, kaolinite, sand and charcoal) and each mixture (13
mixtures (see Table 1)) were arranged in a (68�618) matrix.

All the elementary matrices of the pure compounds and the
mixtures were gathered together in a (20�68�618) 3-way cubic
array (20 spectra corresponding to the 13 mixtures and 7 pure
compounds, 68 excitation wavelengths and 618 emission wave-
lengths). The cube of data was unfolded to give a (20�42024)
matrix in order to apply ICA.

2.4. Spectra pretreatment

The two bands corresponding to the first- and the second-order
Rayleigh scattering were detected and eliminated using the method
proposed by Bahram et al. but without interpolation so as to avoid the
addition of any information to the original spectra [29].

Table 1
Mixture design.

Experiments BSA(%) Oil and grease in soil
(Lipids%)

Cellulose(%)

1 0 0 50
2 20 0 30
3 0 20 30
4 20 20 10
5 10 0 40
6 0 10 40
7 20 10 20
8 10 20 20
9 10 10 30

10 5 5 40
11 15 5 30
12 5 15 30
13 15 15 20
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3. Chemometrics methods

JADE was used to analyze the unfolded cube of EEMs (Table 2).
The ICA_by_Blocks procedure uses JADE to determine the optimal
numbers of independent components (ICs) to apply in the final ICA
decomposition [30–32]. ICA_by_Blocks selects the optimal number
of ICA signals to extract from a data matrix as being the number of
signals found to be highly correlated in two representative subsets
of the data matrix.

4. Results and discussion

4.1. Spectra

Fig. 1 shows the excitation–emission matrices (EEMs) of the
different pure organic compounds and the EEM of an example of a

soil model (Experiment 2 in Table 1) before and after scatter
correction.

First- and second-order Rayleigh scatter signals do not contain
any relevant chemical information. However, these bands can
create problems when their intensity exceeds that of the informa-
tive fluorescence signals. In this case, the scatter complicates the
analysis of the EEMs. As can be clearly seen in Fig. 1, the
fluorophores are in some cases almost completely hidden (see
BSA and mixture) by the Rayleigh scatter.

The BSA has a very intense peak at around λex¼250–310 nm,
λem¼310–390 nm [5,33–37] and another one less visible with a
maximum at about λex¼370 nm, λem¼450 nm.

In previous studies that have examined the fluorescence of
proteins in solution [38–41], it has been shown that aromatic
amino acids (tryptophan, tyrosine and phenylalanine) give a single
peak in the region of the ‘protein-like’ fluorescence. However,
in our case, BSA, in its commercial powder forms, presents
two peaks.

Table 2
Chemical interpretation of IC signals calculated by the JADE algorithm.

IC Wavelength region Possible fluorophores References

1 λex¼230–250 nm, λem¼300–420 nm Cellulose [42–49]
λex¼250–300 nm, λem¼330–490 nm
λex¼ 305–375 nm, λem¼350–480 nm

2 λex¼250–310 nm, λem¼310–380 nm BSA [5,33–37]
3 λex¼285–310 nm, λem¼330–380 nm Protein_like

λex¼310–450 nm, λem¼375–530 nm Free and protein-bound amino acids
4 Rayleigh scattering
5

Fig. 1. Fluorescence excitation–emission matrices (EEM) obtained by 3D –SPFFF spectroscopy for commercial powders of BSA, cellulose, lignin, charcoal, lipids and a mixture
example before (left) and after (right) Rayleigh correction.
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In Fig. 2a and b, two peaks can be seen in the EEM of tyrosine
and phenylalanine commercial powders which is in accordance
with the results found with BSA (see Fig. 6c where the scale was
adjusted to make the second peak more visible). However, the
same samples analyzed in aqueous solution give a single peak
which confirms the existing studies (figures are not shown).

The EEM of cellulose shows a wide fluorescent region that can
be divided into a peak around λex¼230–250 nm and λem¼350–
440 nm, a shoulder at λex¼250–300 nm, λem¼330–480 nm and a
peak about λex¼305–450 nm, λem¼350–500 nm (see Fig. 1).

In the literature, depending on its source (wood, bagasse, cotton,
etc.), cellulose has one to three characteristic peaks [42–49].

In the spectrum of lignin, we note that there is almost no
fluorescence. However, in previous studies, lignin analyzed in
solution fluoresces [50,51]. In our case, when analyzed in powder
form, the fluorescence of lignin is greatly reduced due to the
presence of strong light-absorbing chromophores [52].

There is no fluorescence for charcoal. In fact, as with lignin, this
standard is a dark-colored solid that contains a high concentration
of light-absorbing components which absorb excitation light and/
or fluorescence emission [52].

In the mixture spectrum (Fig. 1), there is a large area of
fluorescence that, at a first glance, contains the fluorophores of
the pure compounds (BSA and cellulose). The interpretation of
such spectra containing mixed signals is difficult. For this reason,
ICA should facilitate the interpretation of the data by extracting
the signals containing specific wavelength zones corresponding to
individual pure compounds.

4.2. ICA analysis

The ICA_by_Blocks method was applied on the unfolded matrix
with B¼2 blocks and Amax¼10. The correlation plot presented in
Fig. 3 shows that after extracting 5 ICs, the curves of correlation
coefficient drop. Thus, 5 ICs were used in the final ICA model.

Observing the spectra of the pure compounds (Fig. 1), we note
that only two compounds fluoresce (there is not a lot of fluores-
cence for lipids). However, according to Fig. 3, there are five ICs to
be extracted. In fact, not all IC signals correspond to chemical
components; some ICs may result from variations in base line and
residual Rayleigh diffusion (not shown here); and others may
correspond to different physico-chemical phenomena associated
with the same chemical compound [53].

4.3. Extracted independent components

IC1 (Fig. 4) is related to cellulose [42–49]. It can be seen that the
pure compounds other than cellulose have the lowest proportions
(Fig. 4a).

According to the distribution of the samples, the proportion
values can be clearly seen to depend on the cellulose concentra-
tion in each mixture. The cellulose fluoresces more in mixtures
(probably due to interactions with other constituents). This can be
seen from the fact that cellulose at 100% is in fact situated between
20% and 10%. This may be due to self-quenching: the intensity of
fluorescence is proportional to the concentration of the fluoro-
phores over a certain concentration range. However, at high
concentrations of fluorophores the proportionality is no longer
satisfied, because of significant collisional quenching between the
molecules of the fluorophore themselves [54].

IC2 (Fig. 5) is associated to BSA that produces fluorescence in
the ‘protein-like’ region [5,33–37]. In fact, this pure compound has
the highest proportion value (Fig. 5a).

The three mixtures containing higher BSA proportions (20%)
have higher proportion values (Fig. 5a). However, the pure
compounds (except BSA) have the lowest values. The quantities
of BSA used in the mixtures (with a maximum of 20%) are smaller
than those of cellulose (Fig. 4a) which may explain why the
difference between the proportion values corresponding to the
different mixtures is less clear.

The fluorescence intensity of BSA is not proportional to its
concentration in each mixture, probably due to fluorescence
quenching (bimolecular processes that reduce the fluorescence
quantum yield without changing the fluorescence emission spec-
trum); that can result from transient excited-state interactions
(collisional quenching) or from formation of non-fluorescent
ground-state species [55].

The IC3 signal plot (Fig. 6b) shows two peaks. The first one
(λex¼285–310 nm, λem¼330–380 nm) is in the ‘protein-like’
region and is slightly shifted compared to the peak of BSA found
in IC2. The second one, which is more visible, (λex¼310–450 nm,
λem¼375–530 nm) is at higher excitation/emission couple (see IC3
in Table 1).

These excitation/emission wavelength couples—generally consid-
ered as humic-like compounds [33]—were also reported to be the
characteristic of complex products, such as melanoidins and lipofus-
cins, derived from protein, lipid and sugar oxidation [56–58].

The IC3 proportions plot (Fig. 6a) shows that pure compounds
such as BSA and cellulose have the highest values corresponding to
these fluorophores, while charcoal and lignin have the lowest
values.

In Fig. 6, the excitation–emission spectrum of the BSA is shown
in the same scale as that of cellulose in Fig. 4 so as to make the
second peak visible which otherwise is almost invisible because
the intensity of the peak is found in the ‘protein-like’ region.

Fig. 2. Fluorescence excitation–emission matrices (EEM) obtained by 3D –SPFFF
spectroscopy for commercial powders of phenylalanine (a) and tyrosine (b).
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This part of the signal is characteristic of the powder form of
the BSA. In fact, as discussed in Section (4.1), BSA in aqueous
solution shows a single peak in the protein-like region.

The second peak of the BSA spectrum, found at higher emission
wavelengths, overlaps with that of cellulose and this is probably
the reason why the proportion value of cellulose is also high (see

Fig. 3. Correlations between signals extracted from the two blocks.

Fig. 4. Scores (a) and signal (b) of IC1 and EEM of cellulose (c).
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Fig. 5. Scores (a) and signal (b) of IC2 and EEM of BSA (c).

Fig. 6. Scores (a) and signal (b) of IC3 and amplified EEM of BSA (c).
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Figs. 4c and 6c). Therefore, IC3 which corresponds to the second
peak cannot be used to characterize BSA and cellulose.

Regarding the results obtained with the mixtures that simulate
the composition of natural soils, 3D-SPFFF spectroscopy could be
considered as a useful, simple and quick technique to characterize
organic matter. In fact, using this technique coupled with Inde-
pendent Components Analysis, several organic molecules such as
cellulose, proteins and amino acids (major components of organic
matter) can be identified. However, the quantification is difficult
due to the problems of quenching and interaction between the
compounds in the mixture.

In addition, when applied to solid samples, this technique gives
results that better approximate the interactions that occur in
natural soil, which is not the case for the samples analyzed in
solution or after different extractions by solvent. In fact, it has been
demonstrated in this study that the fluorescence of protein (BSA)
and amino acids (tyrosine and phenylalanine) is different depend-
ing on the powder form or solution of the analyzed sample.

5. Conclusion

The present study aimed to evaluate the feasibility of
3D-fluorescence spectroscopy for the characterization of organic
constituents of soils using simplified models. The observation of
interactions between some compounds of the model soils shows
that more knowledge is necessary about the phenomena of
quenching and interactions between the compounds in the mix-
ture before going on to analyze real soils samples.

3D front-face solid-phase fluorescence spectroscopy has been
shown to be an easy, reliable and practical analytical method to
study soil organic matter and especially lightly-colored matrices
even if it still has some limitations for quantification due to
interactions between the different constituents. Nevertheless,
these problems do not affect the qualitative and, in some cases,
semi-quantitative characterization of model soils.

The present study has also shown that ICA is a powerful tool for
the decomposition of front-face 3D-fluorescence spectra and
extraction of the constituent signals presenting specific wave-
length zones corresponding to the individual fluorophores or to
interpretable artifacts which facilitate the interpretation of the
results.
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